Lipschitz Spaces with respect to Jacobi Translation
نویسندگان
چکیده
The Jacobi polynomials induce a translation operator on function spaces on the interval [−1, 1]. For any homogeneous Banach space B w.r.t. this translation, we can study the according little and big Lipschitz spaces, lipB(λ) and LipB(λ), respectively. The big Lipschitz spaces are not homogeneous themselves. Therefore we introduce semihomogeneous Banach spaces w.r.t. Jacobi translation, of which the big Lipschitz spaces are particular examples. We study the relation between semihomogeneous Banach spaces and their homogeneous counterparts. We give a characterisation of Lipschitz spaces in terms of intermediate spaces. Our main result is that, for an arbitrary homogeneous Banach space B, the bidual of the little Lipschitz space lipB(λ) is the corresponding big one, namely LipB(λ).
منابع مشابه
Generalization of Titchmarsh’s Theorem for the Jacobi-Dunkl Transform
In this paper, using a generalized Jacobi-Dunkl translation operator, we prove a generalization of Titchmarsh’s theorem for functions in the k-JacobiDunkl-Lipschitz class defined by the finite differences of order k ∈ N∗ and Sobolev spaces associated with the Jacobi-Dunkl operator.
متن کاملSome Results for the Jacobi-Dunkl Transform in the Space $L^{p}(mathbb{R},A_{alpha,beta}(x)dx)$
In this paper, using a generalized Jacobi-Dunkl translation operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the Lipschitz Jacobi-Dunkl condition in the space Lp.
متن کاملHomogeneous Banach spaces with respect to Jacobi polynomials
Homogeneous Banach spaces determined by the Jacobi translation operator are introduced and studied. Based on this translation operator a Jacobi differential operator is analyzed. Approximation procedures in the homogeneous Banach spaces are presented.
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملExtended Jacobi and Laguerre Functions and their Applications
The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...
متن کامل